Austenitic chromium-nickel stainless steel – "Classic material for corrosion-resistant springs" (1.4310) | Code | X10CrNi18-8 | |--|--| | US standard (AISI) | 301 | | Composition Alloying components [%] | C: 0.05 - 0.15 N: 0 - 0.10 Si: 0 - 2.00 Remainder: Fe Mn: 0 - 2.00 P: 0 - 0.045 Mo: 0 - 0.80 S: 0 - 0.015 | | Stainless steel grade | A2 | | Density [g/cm³] | 7.9 | | Nickel migration
[μg/(cm² x week)] in artificial
perspiration (pH 4.5) | <0.5 | | Yield point
Rp0.2 [N/mm²] | ≥195 | | Tensile strength
Rm [N/mm²] | 500 - 750 | | Corrosion resistance | Good Solution annealed for resistance to intergranular corrosion Optimum resistance when polished | | Machinability | medium | | Weldability | very good | | Other properties | Metastable austenitic structure that work-hardens very well during cold working, giving it the necessary material properties for manufacturing spring elements Can be mechanically polished to a brilliant sheen Suitability for electropolishing: very good In the work-hardened state, it is stable up to 300°C provided that there is no change in structure | | Main uses | Main area of application: ■ Corrosion-resistant springs (up to 300°C) | | | General applications involving medium levels of corrosive stress: Automotive industry Chemical industry Tools Food industry |